一区电影_天天操天天干视频_蜜桃精品久久久久久久免费影院_亚洲免费在线看_中文字幕大全_黄色片网站在线看

當前位置:首頁>工作總結>2023年數學高考知識點歸納總結(8篇)

2023年數學高考知識點歸納總結(8篇)

時間:2023-07-16 11:52:08 作者:李Y

總結是把一定階段內的有關情況分析研究,做出有指導性的經驗方法以及結論的書面材料,它可以使我們更有效率,不妨坐下來好好寫寫總結吧。寫總結的時候需要注意什么呢?有哪些格式需要注意呢?以下我給大家整理了一些優質的總結范文,希望對大家能夠有所幫助。

2023年數學高考知識點歸納總結(8篇)篇一

必修課程由5個模塊組成:

必修1:集合、函數概念與基本初等函數(指、對、冪函數)

必修2:立體幾何初步、平面解析幾何初步。

必修3:算法初步、統計、概率。

必修4:基本初等函數(三角函數)、平面向量、三角恒等變換。

必修5:解三角形、數列、不等式。

以上是每一個高中學生所必須學習的。

上述內容覆蓋了高中階段傳統的數學基礎知識和基本技能的主要部分,其中包括集合、函數、數列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎的同時,進一步強調了這些知識的發生、發展過程和實際應用,而不在技巧與難度上做過高的要求。

此外,基礎內容還增加了向量、算法、概率、統計等內容。

2.重難點及考點:

重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數

難點:函數、圓錐曲線

2023年數學高考知識點歸納總結(8篇)篇二

選修1-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何。

選修1-2:統計案例、推理與證明、數系的擴充與復數、框圖

系列2: 3個模塊

選修2-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何

選修2-2:導數及其應用、推理與證明、數系的擴充與復數

選修2-3:計數原理、隨機變量及其分布列、統計案例

選修4-1:幾何證明選講

選修4-4:坐標系與參數方程

選修4-5:不等式選講

2.高考數學必考重難點及其考點:

2023年數學高考知識點歸納總結(8篇)篇三

當命題“若a則b”為真時,a稱為b的充分條件,b稱為a的必要條件。

2.轉換法:當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷。

3.集合法

若a?b,則p是q的充分條件。

若a?b,則p是q的必要條件。

若a=b,則p是q的充要條件。

若a?b,且b?a,則p是q的既不充分也不必要條件。

(1)交換命題的條件和結論,所得的新命題就是原來命題的逆命題;

(2)同時否定命題的條件和結論,所得的新命題就是原來的否命題;

(3)交換命題的條件和結論,并且同時否定,所得的新命題就是原命題的逆否命題。

2.由于“充分條件與必要條件”是四種命題的關系的深化,他們之間存在這密切的聯系,故在判斷命題的條件的充要性時,可考慮“正難則反”的.原則,即在正面判斷較難時,可轉化為應用該命題的逆否命題進行判斷。一個結論成立的充分條件可以不止一個,必要條件也可以不止一個。

2023年數學高考知識點歸納總結(8篇)篇四

例:已知,正四面體中,一枚棋子從一個頂點出發,選任何一條棱移動的概率都相等,每次移動前,擲一次骰子,出現偶數點,則棋子原地不動;若出現奇數點,則移動。 一枚棋子從點開始移動到點,求擲次骰子,才到達點的概率。

點撥:此題位置不確定,擲點奇偶不定,關系復雜,利用遞推思想是最有郊的方法,通過構建遞推數列,問題迎刃而解。一般存在相互依存關系問題的概率都可運用遞推思路去解決。

綜上所述,靈活運用遞推思維,構造遞推數列解決某些問題,可以起到化繁為簡、化抽象為具體的奇效。 其運用過程中,融高度的邏輯性于一體,是數學中化歸思想的深度體現,因此在平時高考復習中,應引起我們足夠的重視。

二、數列遞推思想在計數方面的應用

點撥:在一些復雜的計數問題中,運用數列遞推思維組建遞推關系可起到“皰丁解牛”的作用,使問題清晰而明了。需要說明的是,此題涉及到計數中的染色問題,通過遞歸關系得到一個一般化的'通式,此式在染色問題中應用相當廣泛。

三、數列在歸納推理中應用

例:一白珠下面掛一黑珠,每一黑珠下掛一黑珠與一白珠,則第11行黑珠的個數為________。

點撥:此題通過運用遞推思想得到一個遞推關系,正是著名的“斐波拉契數列”。 在一些數列歸納通項的推理中,利用遞推思想,構建遞推公式,使有限拓展到無限,由特殊變成一般規律,這是解決此類問題常見思路與方法,同理這也體現了合理推理的精髓所在。

2023年數學高考知識點歸納總結(8篇)篇五

在直角坐標系中,動點所經過的軌跡用一個二元方程f(x,y)=0表示出來。

求動點的軌跡方程的基本方法:

直接法、定義法、相關點法、參數法、交軌法等。

用直接法求動點軌跡一般有建系,設點,列式,化簡,證明五個步驟,最后的證明可以省略,但要注意“挖”與“補”。求軌跡方程一般只要求出方程即可,求軌跡卻不僅要求出方程而且要說明軌跡是什么。

動點所滿足的條件不易表述或求出,但形成軌跡的動點p(x,y)卻隨另一動點q(x′,y′)的運動而有規律的運動,且動點q的軌跡為給定或容易求得,則可先將x′,y′表示為x,y的式子,再代入q的軌跡方程,然而整理得p的軌跡方程,代入法也稱相關點法。一般地:定比分點問題,對稱問題或能轉化為這兩類的軌跡問題,都可用相關點法。

求軌跡方程有時很難直接找到動點的橫坐標、縱坐標之間的關系,則可借助中間變量(參數),使x,y之間建立起聯系,然而再從所求式子中消去參數,得出動點的軌跡方程。用什么變量為參數,要看動點隨什么量的變化而變化,常見的參數有:斜率、截距、定比、角、點的坐標等。要特別注意消參前后保持范圍的等價性。多參問題中,根據方程的觀點,引入n個參數,需建立n+1個方程,才能消參(特殊情況下,能整體處理時,方程個數可減少)。

求兩動曲線交點軌跡時,可由方程直接消去參數,例如求兩動直線的交點時常用此法,也可以引入參數來建立這些動曲線的聯系,然而消去參數得到軌跡方程。可以說是參數法的一種變種。用交軌法求交點的軌跡方程時,不一定非要求出交點坐標,只要能消去參數,得到交點的兩個坐標間的關系即可。交軌法實際上是參數法中的一種特殊情況。

(2)寫集合寫出符合條件p的點m的集合p(m);

(3)列式用坐標表示p(m),列出方程f(x,y)=0;

(4)化簡化方程f(x,y)=0為最簡形式;

(5)證明證明以化簡后的方程的解為坐標的點都是曲線上的點,

2023年數學高考知識點歸納總結(8篇)篇六

2、基本的初等函數(指數函數、對數函數);

3、函數的性質及應用(比較抽象,較難理解)。

必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角。

這部分知識是高一學生的難點,比如:一個角實際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學生的立體意識較強。這部分知識高考占22---27分。

2、直線方程:高考時不單獨命題,易和圓錐曲線結合命題。

3、圓方程:

必修三:1、算法初步:高考必考內容,5分(選擇或填空);

2、統計:3、概率:高考必考內容,09年理科占到15分,文科數學占到5分。

必修四:1、三角函數:(圖像、性質、高中重難點,)必考大題:15---20分,并且經常和其他函數混合起來考查。

2、平面向量:高考不單獨命題,易和三角函數、圓錐曲線結合命題。09年理科占到5分,文科占到13分。

2、數列:高考必考,17---22分;

3、不等式:(線性規劃,聽課時易理解,但做題較復雜,應掌握技巧。高考必考5分)不等式不單獨命題,一般和函數結合求最值、解集。

文科:選修1—1、1—2。

選修1--1:重點:高考占30分。

1、邏輯用語:一般不考,若考也是和集合放一塊考;

2、圓錐曲線;

3、導數、導數的應用(高考必考)。

選修1--2:1、統計;

2、推理證明:一般不考,若考會是填空題;

3、復數:(新課標比老課本難的多,高考必考內容)。

理科:選修2—1、2—2、2—3。

選修2--1:1、邏輯用語;2、圓錐曲線;3、空間向量:(利用空間向量可以把立體幾何做題簡便化)。

選修2--2:1、導數與微積分;

2、推理證明:一般不考3、復數。

2、隨機變量及其分布:不單獨命題;

3、統計。

2023年數學高考知識點歸納總結(8篇)篇七

動點的軌跡方程動點的軌跡方程:在直角坐標系中,動點所經過的軌跡用一個二元方程f(x,y)=0表示出來。

求動點的軌跡方程的基本方法:直接法、定義法、相關點法、參數法、交軌法等。

用直接法求動點軌跡一般有建系,設點,列式,化簡,證明五個步驟,最后的證明可以省略,但要注意“挖”與“補”。求軌跡方程一般只要求出方程即可,求軌跡卻不僅要求出方程而且要說明軌跡是什么。

動點所滿足的條件不易表述或求出,但形成軌跡的動點p(x,y)卻隨另一動點q(x′,y′)的運動而有規律的運動,且動點q的軌跡為給定或容易求得,則可先將x′,y′表示為x,y的式子,再代入q的軌跡方程,然而整理得p的軌跡方程,代入法也稱相關點法。一般地:定比分點問題,對稱問題或能轉化為這兩類的軌跡問題,都可用相關點法。

求軌跡方程有時很難直接找到動點的橫坐標、縱坐標之間的關系,則可借助中間變量(參數),使x,y之間建立起聯系,然而再從所求式子中消去參數,得出動點的軌跡方程。用什么變量為參數,要看動點隨什么量的變化而變化,常見的參數有:斜率、截距、定比、角、點的坐標等。要特別注意消參前后保持范圍的等價性。多參問題中,根據方程的觀點,引入n個參數,需建立n+1個方程,才能消參(特殊情況下,能整體處理時,方程個數可減少)。

求兩動曲線交點軌跡時,可由方程直接消去參數,例如求兩動直線的交點時常用此法,也可以引入參數來建立這些動曲線的聯系,然而消去參數得到軌跡方程。可以說是參數法的一種變種。用交軌法求交點的軌跡方程時,不一定非要求出交點坐標,只要能消去參數,得到交點的兩個坐標間的關系即可。交軌法實際上是參數法中的一種特殊情況。

(2)寫集合寫出符合條件p的點m的集合p(m);

(3)列式用坐標表示p(m),列出方程f(x,y)=0;

(4)化簡化方程f(x,y)=0為最簡形式;

(5)證明證明以化簡后的方程的解為坐標的點都是曲線上的點。

2023年數學高考知識點歸納總結(8篇)篇八

40.數0有區別,的模為數0,它不是沒有方向,而是方向不定。可以看成與任意向量平行,但與任意向量都不垂直。

41.數量積與兩個實數乘積的區別:

已知實數,且,則a=c,但在向量的數量積中沒有.

42.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。

相關范文推薦
  • 07-16 藥店培訓總結心得體會大全
    當在某些事情上我們有很深的體會時,就很有必要寫一篇心得體會,通過寫心得體會,可以幫助我們總結積累經驗。心得體會對于我們是非常有幫助的,可是應該怎么寫心得體會呢?
  • 07-16 客戶信息保密協議 信息保密協議(模板6篇)
    無論是身處學校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。范文怎么寫才能發揮它最大的作用呢?接下來小編就給大家介紹一下優秀的范文該怎
  • 07-16 值日生心得 小小值日生心得體會(大全5篇)
    在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。范文怎么寫才能發揮它最大的作用呢?這里我整理了一些優秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。
  • 07-16 學會感恩孝敬父母演講稿通用
    演講稿也叫演講詞,是指在群眾集會上或會議上發表講話的文稿。演講稿是進行宣傳經常使用的一種文體。演講的作用是表達個人的主張與見解,介紹一些學習、工作中的情況、經驗
  • 07-16 快遞驛站租賃協議(精選10篇)
    每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養人的觀察、聯想、想象、思維和記憶的重要手段。那么我們該如何寫一篇較為完美的范文呢?下面是小編幫大家
  • 07-16 初中生期末自我評價通用
    在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。大家想知道怎么樣才能寫一篇比較優質的范文嗎?下面是小編幫大家整理的優質范文,僅供參考,大家一起來看看吧。初
  • 07-16 知識講座策劃書十大全
    人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經的人生經歷和感悟記錄下來,也便于保存一份美好的回憶。那么我們該如何寫一篇較為完美的范文呢?接下來
  • 07-16 2023年村民入股合作社協議書(匯總5篇)
    在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。范文怎么寫才能發揮它最大的作用呢?下面是小編幫大家整
  • 07-16 最新大班春季活動策劃方案(優秀9篇)
    方案可以幫助我們規劃未來的發展方向,明確目標的具體內容和實現路徑。方案的格式和要求是什么樣的呢?接下來小編就給大家介紹一下方案應該怎么去寫,我們一起來了解一下吧
  • 07-16 承包合同不合理要求收回(模板8篇)
    隨著法律觀念的日漸普及,我們用到合同的地方越來越多,正常情況下,簽訂合同必須經過規定的方式。那么大家知道正規的合同書怎么寫嗎?下面我就給大家講一講優秀的合同該怎

猜你喜歡

熱門推薦

主站蜘蛛池模板: a国产精品| 欧美成人免费高清视频 | 欧美日韩国产va另类 | 亚洲欧美在线观看视频 | 久久久久无码国产精品一区 | 成人区精品一区二区毛片不卡 | 欧美国产成人精品一区二区三区 | 日韩综合第一页 | 亚洲国产精品综合久久网络 | 欧美日本国产 | 99视频九九精品视频在线观看 | 久久国产精品免费一区二区三区 | 五十路完熟交尾 | 唯美清纯另类亚洲 | a毛片成人免费全部播放 | 国产三级一区二区 | 国产va在线视频观看 | 国产精品亚洲片在线观看不卡 | 久久免费精品国产72精品剧情 | 国产一区二区免费播放 | 国产啪视频 | 日韩区在线 | 亚洲欧美日韩在线 | 亚洲综合日韩在线亚洲欧美专区 | 国产精品成人一区二区 | 一区二区视频 | 97成人资源 | 久久久久国产成人精品亚洲午夜 | 国产精品亚洲一区二区在线观看 | 欧美一区在线播放 | 欧美日本韩国一区二区 | 免费在线观看的视频 | 欧美日韩国产在线观看 | 极品国产高颜值露脸在线 | 亚洲国产精品嫩草影院久久 | 另类欧美日韩 | 一区二区日韩 | 在线免费视频国产 | 91精品国产色综合久久 | 国产a级网站 | 小草视频网站 |